Publications
HOME > Achievement > Publications
Á¦¸ñ Efficient mercury sequestration from wastewaters using palm kernel and coconut shell derived biochars (2022)

Efficient mercury sequestration from wastewaters using palm kernel and coconut shell derived biochars (2022)

 

Samiratu Atibun Isa, Muhammad Aamir Hafeez, Bhupendra Kumar Singh, Sae Yun Kwon, Sungwook Choung, Wooyong Um,

 

Environmental Advances, Volume 8, 2022,100196

 

https://doi.org/10.1016/j.envadv.2022.100196.

(https://www.sciencedirect.com/science/article/pii/S2666765722000321)

 

Abstract: Elevated mercury (Hg) concentrations in water bodies caused by illegal artisanal gold mining in Ghana is a serious health concern given the toxicity of Hg. As an ecofriendly cost-effective solution for removing Hg from these water bodies, we synthesized biochars using palm kernel (PB) and coconut shells (CB), which are dominant biomass wastes in Ghana. The biochars were sulfurized (SPB, SCB) and fabricated into polysulfone-based beads for Hg(II) sorption. The Hg(II) concentration, contact time, sorbent mass, and solution pH were investigated and were found to be influential on the sorption of Hg(II) from aqueous solution. The sulfurized biochars showed a faster Hg(II) removal (within 1h) compared to the pristine biochars. Sorption tests conducted using natural riverine water samples confirmed the potential use of the biochars, with SPB and SCB showing higher efficiencies than pristine PB and CB. The fabricated beads exhibited 7090% efficiency in Hg(II) removal from 1.0 mg L1 Hg solution and the sorption capacity was below 0.1 mg g1, which we attribute to the mass of biochar used for the beads. The Hg(II) sorption mechanisms of PB and CB from spectroscopic analyses suggest that the biochars synthesized in this study can be used to treat Hg polluted waters and suitable for large-scale applications in natural water bodies.

 

Keywords: Biochar; Mercury (II); Sorption; Polysulfone; Sulfurized; Polymer-biochar bead


¹øÈ£ Á¦¸ñ
32 Co2+/PMS based sulfate-radical treatment for effective mineralization of spent ion exchange resin (2022)
now_gul Efficient mercury sequestration from wastewaters using palm kernel and coconut shell derived biochars (2022)
30 Decontamination of radioactive metal wastes using underwater microwave plasma (2022)
29 The comprehensive evaluation of available pilot-scale H2S abatement process in a coke-oven gas: Efficiency, economic, energy, and environmental safety (4ES) (2021)
28 Chemical and Mechanical Sustainability of Silver Tellurite Glass Containing Radioactive Iodine-129 (2021)
27 Top-down Synthesis of NaP zeolite from Natural Zeolite for the Higher Removal Efficiency of Cs, Sr, and Ni (2021)
26 Process optimization and safety assessment on a pilot-scale Bunsen process in sulfur-iodine cycle (2021)
25 Removal of iodine (I− and IO3−) from aqueous solutions using CoAl and NiAl layered double hydroxides (2021)
24 Inorganic Waste Forms for Efficient Immobilization of Radionuclides (2021)
23 Development of geopolymer waste form for immobilization of radioactive borate waste (2021)
22 Efficient radon removal using fluorine-functionalized natural zeolite (2021)
21 Removal of Radioactive Cesium in Secondary Wastewater after Soil-washing Process (2021)
20 Fenton-like treatment for reduction of simulated carbon-14 spent resin (2021)
19 Effect of ion exchange resin particle size on homogeneity and leachability of Cs and Co in polymer waste form (2021)
18 Comparative Study Between Geopolymer and Cement Waste Forms for Solidification of Corrosive Sludge (2020)
first prv 1 2 3 4 5 next end