Publications
HOME > Achievement > Publications
Á¦¸ñ The comprehensive evaluation of available pilot-scale H2S abatement process in a coke-oven gas: Efficiency, economic, energy, and environmental safety (4ES) (2021)

The comprehensive evaluation of available pilot-scale H2S abatement process in a coke-oven gas: Efficiency, economic, energy, and environmental safety (4ES) (2021)

 

JunKyu Park, Seok Young Lee, SeungJae Lee, Hyunmin Oh, Jinsu Kim, Young-Seek Yoon, In-Beum Lee, Wooyong Um

 

Journal of Environmental Chemical Engineering Volume 9, Issue 6, December 2021, 106903

 

DOI : https://doi.org/10.1016/j.jece.2021.106903

 

 

ABSTRACT 

 

This study implemented the comprehensive evaluation of desulfurization efficiency-energy potential-economic-safety into three different processes for removing hydrogen sulfide from coke oven gas. Three different processes were NH3 absorption, MDEA process, Fumaks wet oxidation process. NH3 and MDEA process utilized the conventional absorption-stripping configuration with absorbent while the wet oxidation process was composed of two consecutive H2S removal processes. Energy potential and safety assessment were augmented besides conventional assessment such as economic and removal efficiency. The energy potential of coke oven gas was evaluated in terms of Low heating value. The dispersion distance of H2S gas was evaluated in case of leakage accident for safety assessment. The desulfurization efficiencies of NH3 absorption, MDEA, wet oxidation were 76.5%, 94.3%, 99.0%. For evaluating energy potential low heating value of NH3 absorption, MDEA, wet oxidation were 17.81 MJ/m3, 17.89 MJ/m3, and 18.37 MJ/m3. The capital costs of NH3 absorption, MDEA, wet oxidation were $ 38.0/Nm3y, $ 50.6/Nm3y, and $ 67.5/Nm3y. Overall, the wet oxidation exhibited the highest H2S removal efficiency and energy potential but the highest cost required and relatively high H2S dispersion distance. The MDEA showed moderate performance on efficiency, cost, and safety. The NH3 absorption process showed the cheapest cost consumed and relatively safe but lowest H2S removal and energy potential. Wet oxidation, Therefore, wet oxidation would be suited for meeting strict environmental regulations. MDEA process would be suited for power utilization and less strict environmental regulation with lower cost. NH3 absorption would be suited for direct utilization to other processes.


¹øÈ£ Á¦¸ñ
32 Co2+/PMS based sulfate-radical treatment for effective mineralization of spent ion exchange resin (2022)
31 Efficient mercury sequestration from wastewaters using palm kernel and coconut shell derived biochars (2022)
30 Decontamination of radioactive metal wastes using underwater microwave plasma (2022)
now_gul The comprehensive evaluation of available pilot-scale H2S abatement process in a coke-oven gas: Efficiency, economic, energy, and environmental safety (4ES) (2021)
28 Chemical and Mechanical Sustainability of Silver Tellurite Glass Containing Radioactive Iodine-129 (2021)
27 Top-down Synthesis of NaP zeolite from Natural Zeolite for the Higher Removal Efficiency of Cs, Sr, and Ni (2021)
26 Process optimization and safety assessment on a pilot-scale Bunsen process in sulfur-iodine cycle (2021)
25 Removal of iodine (I− and IO3−) from aqueous solutions using CoAl and NiAl layered double hydroxides (2021)
24 Inorganic Waste Forms for Efficient Immobilization of Radionuclides (2021)
23 Development of geopolymer waste form for immobilization of radioactive borate waste (2021)
22 Efficient radon removal using fluorine-functionalized natural zeolite (2021)
21 Removal of Radioactive Cesium in Secondary Wastewater after Soil-washing Process (2021)
20 Fenton-like treatment for reduction of simulated carbon-14 spent resin (2021)
19 Effect of ion exchange resin particle size on homogeneity and leachability of Cs and Co in polymer waste form (2021)
18 Comparative Study Between Geopolymer and Cement Waste Forms for Solidification of Corrosive Sludge (2020)
first prv 1 2 3 4 5 next end