Publications
HOME > Achievement > Publications
Á¦¸ñ Development of metakaolin-based geopolymer for solidification of sulfate-rich HyBRID sludge waste (2019)

Development of metakaolin-based geopolymer for solidification of sulfate-rich HyBRID sludge waste

Jinmo Ahn, Won-Seok Kim, Wooyong Um

Journal of Nuclear Materials, 2019, 518, 247-255

https://doi.org/10.1016/j.jnucmat.2019.03.008

 

Abstract

 

Radioactive waste which contains high sulfate ion is an abiding challenge for cementitious solidification due to the formation of sulfate mineral such as ettringite. Such secondary mineral formation can cause the expansion and disintegration of cement waste form, resulting in the increase of leachability. To alleviate this problem, we proposed metakaolin-based geopolymer waste form to solidify the radioactive waste containing high sulfate content generated from the Hydrazine Based Reductive metal Ion Decontamination (HyBRID) process. Although ettringite formation was observed in the cement waste form, this mineral did not form in the geopolymer waste form. The addition of HyBRID sludge waste significantly increased the compressive strength of geopolymers at Si/Al ratio of 1.6 from 13.6 MPa to 49.6 MPa. The partial dissolution of cristobalite was confirmed during geopolymerization induced by potassium silicate solution, which increases the amount of silicon that enters geopolymerization. The maximum waste loading of 53.8% was achieved when geopolymer composition was K2O∙2.8SiO2∙Al2O3∙15.2H2O, which had compressive strength of 14.3 MPa, exceeding the repository acceptance criterion (3.44 MPa). Potassium-based geopolymer showed high compressive strength, low leachability, and high waste loading. These results increase our understanding of the solidification mechanism for HyBRID sludge waste using geopolymer waste form, and highlight the importance of considering the type of alkali cations and different Si/Al ratios when designing the chemical compositions of geopolymer waste form.



¹øÈ£ Á¦¸ñ
17 Decontamination of concrete waste from nuclear power plant decommissioning in South Korea (2020)
16 Charge transfer rhenium complexes analogue to pertechnetate removal (2020)
15 Nanostructured MgFe and CoCr layered double hydroxides for removal and sequestration of iodine anions (2020)
now_gul Development of metakaolin-based geopolymer for solidification of sulfate-rich HyBRID sludge waste (2019)
13 Temporal changes of geochemistry and microbial community in low and intermediate level waste(LILW) repository, South Korea (2019)
12 Development of bismuth-functionalized graphene oxide to remove radioactive iodine (2019)
11 Investigation of 3H, 99Tc, and 90Sr transport in fractured rock and the effects of fractured filling/coating material at LILW disposal facility (2019)
10 Study of Mobility for Radionuclides in Nuclear Facility Sites (2018)
9 Synthesis of rhenium-doped tin dioxide for technetium radioactive waste immobilization (2018)
8 Dissolution of studtite [UO2(O2)(H2O)4] in various geochemical conditions (2018)
7 Effect of seawater intrusion on radioactive strontium (90Sr) sorption and transport at nuclear power plants (2018)
6 Removal of Chalk River unidentified deposit (CRUD) radioactive waste by enhanced electrokinetic process (2018)
5 Synthesis of Tributyl Phosphate-Coated Hydroxyapatite for Selective Uranium Removal (2017)
4 Liquid Scintillation Counting Methodology for 99Tc Analysis: A Remedy for Radiopharmaceutical Waste (2015)
3 Effects of Radiation and Temperature on Iodide Sorption by Surfactant-Modified Bentonite (2014)
first prv 1 2 3 4 5 next end