Publications
HOME > Achievement > Publications
Á¦¸ñ Temporal changes of geochemistry and microbial community in low and intermediate level waste(LILW) repository, South Korea (2019)

Temporal changes of geochemistry and microbial community in low and intermediate level waste(LILW) repository, South Korea

Jinmo Ahn, Won-Seok Kim, Jin-Beak Park, Arokiasamy J. Francis, Wooyong Um

Annals of Nuclear Energy, 2019, 128, 309-317

https://doi.org/10.1016/j.anucene.2019.01.029 

 

Abstract

 

Microbes play a major role in affecting the radioactive wastes disposed of in underground wastes repositories. In particular, low- and intermediate-level waste (LILW) contains biodegradable constituents that can affect stability and mobility of radionuclides by the changes of geochemical conditions due to microbial activity. Despite these potential impacts, the bacterial communities in underground repository remain largely unexplored and previous studies have focused on the traditional culture-dependent methods. We examined the bacterial community in a large-scale in situ container packed with simulated waste in LILW underground repository of South Korea using 454 pyrosequencing. Taxonomic analysis showed the presence of Curvibacter, Azonexus, Pseudomonas, Novosphingobium, Acidovorax, and Victivallis as the dominant bacterial genera. Based on the thermodynamic and geochemical results, the precipitation of calcite was estimated to occur in the presence of genus Curvibacter. Although the flow rate of groundwater input had an impact on the bacterial communities, the community structure was resilient to the change of groundwater¡¯s velocity. In addition, total Fe concentration, [Fetotal] was positively correlated to [Cl−] in this system. The temporal changes of geochemical parameters and bacterial communities provide insight for understanding of the microbial activity inside the large scale container and additional biogeochemical information for long-term risk assessment of disposal facility.


 


¹øÈ£ Á¦¸ñ
17 Decontamination of concrete waste from nuclear power plant decommissioning in South Korea (2020)
16 Charge transfer rhenium complexes analogue to pertechnetate removal (2020)
15 Nanostructured MgFe and CoCr layered double hydroxides for removal and sequestration of iodine anions (2020)
14 Development of metakaolin-based geopolymer for solidification of sulfate-rich HyBRID sludge waste (2019)
now_gul Temporal changes of geochemistry and microbial community in low and intermediate level waste(LILW) repository, South Korea (2019)
12 Development of bismuth-functionalized graphene oxide to remove radioactive iodine (2019)
11 Investigation of 3H, 99Tc, and 90Sr transport in fractured rock and the effects of fractured filling/coating material at LILW disposal facility (2019)
10 Study of Mobility for Radionuclides in Nuclear Facility Sites (2018)
9 Synthesis of rhenium-doped tin dioxide for technetium radioactive waste immobilization (2018)
8 Dissolution of studtite [UO2(O2)(H2O)4] in various geochemical conditions (2018)
7 Effect of seawater intrusion on radioactive strontium (90Sr) sorption and transport at nuclear power plants (2018)
6 Removal of Chalk River unidentified deposit (CRUD) radioactive waste by enhanced electrokinetic process (2018)
5 Synthesis of Tributyl Phosphate-Coated Hydroxyapatite for Selective Uranium Removal (2017)
4 Liquid Scintillation Counting Methodology for 99Tc Analysis: A Remedy for Radiopharmaceutical Waste (2015)
3 Effects of Radiation and Temperature on Iodide Sorption by Surfactant-Modified Bentonite (2014)
first prv 1 2 3 4 5 next end