Publications
HOME > Achievement > Publications
Á¦¸ñ Stability of SrCO3 within composite Portland-slag cement blends (2023)

Stability of SrCO3 within composite Portland-slag cement blends (2023)

 

Sam A. Walling, Laura J. Gardner, Dale P. Prentice, Malin C. Dixon Wilkins, Adham A. Hammad, Wooyong Um, Claire L. Corkhill

 

Cement and Concrete Composites, Volume 135, January 2023, 104823

 

DOI : https://doi.org/10.1016/j.cemconcomp.2022.104823

 

 

ABSTRACT

 

The stability and reactivity of SrCO3 within a blended Portland-slag cement at both 20 ¡ÆC and 60 ¡ÆC (to simulate an indicative waste form for disposal) was determined via XRD, TG-MS, SEM-EDX and thermodynamic modelling. Sr14CO3 is a potential long-term sink for trapping radioactive 14C, produced through the nuclear fuel cycle, therefore understanding its stability in potential cementitious waste forms is of interest and importance. Incorporation of 30 wt% SrCO3 in blended Portland-slag cement caused minor reactions to occur, resulting in increased formation of carbonated AFm phases, along with stabilisation of ettringite at 20 ¡ÆC, precluded at 60 ¡ÆC due to the reduced stability to ettringite at this temperature. Thermodynamic modelling predicted only minor SrCO3 reactivity up to 360 days, with carbonate remaining stable over this timeframe, validated by our experimental results. Thus, thermodynamic simulations predict that SrCO3 is an effective immobilisation matrix for 14C, within a blended Portland-slag cement waste form, suitable for long-term geological disposal.


¹øÈ£ Á¦¸ñ
52 Monte Carlo study of an electron-based neutron source for Bragg edge imaging (2023)
51 Tritium separation from radioactive wastewater by hydrogen isotope‒selective exchange of hydrogen‒bonded fluorine (2023)
50 Influence of MnO and ZnO on molybdate crystallization in borosilicate glass (2023)
49 Technetium (Tc)/Rhenium (Re) Solubility and Leaching Behavior from Waste Forms: An Overview (2023)
now_gul Stability of SrCO3 within composite Portland-slag cement blends (2023)
47 Assessment of sulfidated nanoscale zerovalent iron for in-situ remediation of cadmium-contaminated acidic groundwater near zinc smelter (2023)
46 Prediction of stable radon fluoride molecules and geometry optimization using first-principles calculations (2023)
45 Recent advances in Fenton-like treatment of radioactive ion exchange resins (2023)
44 Decontamination of neutron-activated radioactive concrete waste by separating Eu, Co, Fe, and Mn-containing sand particles using dense medium separation (2023)
43 Comparative study of PMS oxidation with Fenton oxidation as an advanced oxidation process for Co-EDTA decomplexation (2022)
42 Heat, economic and multi-path safety (HEMPS) management on co-generation of hydrogen and sulfuric acid through modified sulfur-iodine cycle (2022)
41 Kinetics and mechanism of rhenium-ethylenediaminetetraacetic acid (Re(IV)-EDTA) complex degradation; For 99Tc-EDTA degradation in the natural environment (2022)
40 The evolution of hydrated lime-based cementitious waste forms during leach testing leading to enhanced technetium retention (2022)
39 Metallic technetium sequestration in nickel Core/Shell microstructure during Fe(OH)2 transformation with Ni doping (2022)
38 Separation of light rare-earth elements using gas-pressurized extraction chromatography (2022)
first prv 1 2 3 4 5 next end