Publications
HOME > Achievement > Publications
Á¦¸ñ Design and Application of Materials for Sequestration and Immobilization of 99Tc (2023)

Design and Application of Materials for Sequestration and Immobilization of 99Tc (2023)

 

Bhupendra Kumar Singh, Nurul Syiffa Mahzan, Nur Shahidah Abdul Rashid, Samiratu Atibun Isa, Muhammad Aamir Hafeez, Sarah Saslow, Guohui Wang, Changki Mo, and Wooyong Um

 

Environmental Science and Technology, 57, 6776-6798

 

DOI: https://doi.org/10.1021/acs.est.3c00129

 

 

ABSTRACT

 

99Technetium (99Tc) is a hazardous radionuclide that poses a serious environmental threat. The wide variation and complex chemistries of liquid nuclear waste streams containing 99Tc often create unique, site specific challenges when sequestering and immobilizing the waste in a matrix suitable for long-term storage and disposal. Therefore, an effective management plan for 99Tc containing liquid radioactive wastes (such as storage (tanks) and decommissioned wastes) will likely require a variety of suitable materials/matrixes capable of adapting to and addressing these challenges. In this review, we discuss and highlight the key developments for effective removal and immobilization of 99Tc liquid waste in inorganic waste forms. Specifically, we review the synthesis, characterization, and application of materials for the targeted removal of 99Tc from (simulated) waste solutions under various experimental conditions. These materials include (i) layered double hydroxides (LDHs), (ii) metal–organic frameworks (MOFs), (iii) ion-exchange resins (IERs) as well as cationic organic polymers (COPs), (iv) surface modified natural clay materials (SMCMs), and (v) graphene-based materials (GBMs). Second, we discuss some of the major and recent developments toward 99Tc immobilization in (i) glass, (ii) cement, and (iii) iron mineral waste forms. Finally, we present future challenges that need to be addressed for the design, synthesis, and selection of suitable matrixes for the efficient sequestration and immobilization of 99Tc from targeted wastes. The purpose of this review is to inspire research on the design and application of various suitable materials/matrixes for selective removal of 99Tc present globally in different radioactive wastes and its immobilization in stable/durable waste forms.

 

 


¹øÈ£ Á¦¸ñ
67 Solubility, complexation and thermodynamics of the Tc(IV)–isosaccharinic acid system: Trends in the M(IV) series (2024)
66 Engineered Sorbents for Selective Uranium Sequestration from Seawater (2024)
65 Assessment of Uranium and Thorium Co-contaminant Exposure from Incidental Concrete Dust Ingestion (2023)
64 Application of Clay Materials for Sorption of Radionuclides from Waste Solutions (2023)
63 Prediction of stable radon fluoride molecules and geometry optimization using first-principles calculations (2023)
62 Sorption and mobility of radioactive Ni in Wolsong waste repository site, South Korea (2023)
61 Microstructure and texture analysis of 304 austenitic stainless steel using Bragg edge transmission imaging (2023)
60 Waste acceptance criteria testings of a phosphate-based geopolymer waste form to immobilize radioactive borate waste (2023)
59 Effect of Si/Al molar ratio and curing temperatures on the immobilization of radioactive borate waste in metakaolin-based geopolymer waste form (2023)
58 Estimation of radionuclides leaching characteristics in different sized geopolymer waste forms with simulated spent ion-exchange resin (2023)
57 Potential of indigenous bacteria driven U(VI) reduction under relevant deep geological repository (DGR) conditions (2023)
56 Dissolution Behaviors of PuO2(cr) in Natural Waters (2023)
now_gul Design and Application of Materials for Sequestration and Immobilization of 99Tc (2023)
54 Evaluating the impact of drying on leaching from a solidified/stabilized waste using a monolithic diffusion model (2023)
53 Acute oral toxicity and bioavailability of uranium and thorium in contaminated soil (2023)
first prv 1 2 3 4 5 next end