Publications
HOME > Achievement > Publications
Á¦¸ñ Monte Carlo study of an electron-based neutron source for Bragg edge imaging (2023)

Monte Carlo study of an electron-based neutron source for Bragg edge imaging (2023)

 

Mahdi Bakhtiari, Nam-Suk Jung, Wooyong Um, and Hee-Seok Lee

 

Nuclear Science and Engineering

 

DOI: https://doi.org/10.1080/00295639.2022.2162791



ABSTRACT


Neutron imaging is a powerful and nondestructive tool for testing materials in industrial and research applications. Compact accelerator neutron sources are gaining interest in neutron application techniques, such as Bragg edge transmission imaging. Delivering a high neutron flux with a narrow pulse width and suppressed photons at the sample position are fundamental factors for designing a neutron source for Bragg edge imaging. In this study, Monte Carlo calculations were performed to simulate a 40-MeV electron beam impinging on a cylindrical tungsten target. Different target moderator and reflector (TMR) geometries were investigated to produce cold neutrons, and their results were compared. Polyethylene (PE) and graphite were used as the moderator and the reflector, respectively. The structures and dimensions of the moderator and reflector were optimized using a Monte Carlo simulation with the PHITS-3.28 code. The effect of the PE moderator temperature on the cold neutron flux was investigated. The results showed that the optimum size of the PE at 77 K inside the reflector was 3 ¡¿ 15 ¡¿ 15 cm3 to achieve the wavelength resolution of 1.05% and the neutron flux of 1.16 ¡¿ 104 n/cm2/s at 1000 cm from the target station by assuming the electron beam current of 275 µA. In addition, the FLUKA 4-2.1 code was used to calculate the neutron spectrum from the designed neutron production target at room temperature, and the results were consistent with the PHITS calculations. The neutron spectrum together with its pulse width from the designed TMR were used to simulate the Bragg edges of an ¥á-Fe sample, and it was concluded that the TMR is suitable for performing Bragg edge imaging.


¹øÈ£ Á¦¸ñ
75 Mechanistic insights into radium adsorption on montmorillonite: DFT and experimental studies (2025)
74 Cesium removal from contaminated montmorillonite using ethylene glycol monoethyl ether and Freezing-Thawing process (2025)
73 Development of a sulfidized zerovalent iron-geopolymer composite for the reductive immobilization of ReO4− (2025)
72 Risks of Nanoscale Byproducts Generated during the Interzeolite Transformation for Cesium Sequestration (2025)
71 Assessment of structural stability and leaching characteristics of phosphate-based geopolymer waste form containing radioactive spent ion exchange resins (2025)
70 Functionalization of layered double hydroxides on bentonite for cesium and iodine retention in high-level radioactive waste disposal (2025)
69 Synthesized Ettringite for Sequestration of Inorganic 14C from the Waste Solution (2025)
68 Key Progress on Chemistry and Analysis of 238 U, 99 Tc, and 137 Cs Radionuclides (2024)
67 Solubility, complexation and thermodynamics of the Tc(IV)–isosaccharinic acid system: Trends in the M(IV) series (2024)
66 Engineered Sorbents for Selective Uranium Sequestration from Seawater (2024)
65 Assessment of Uranium and Thorium Co-contaminant Exposure from Incidental Concrete Dust Ingestion (2023)
64 Application of Clay Materials for Sorption of Radionuclides from Waste Solutions (2023)
63 Prediction of stable radon fluoride molecules and geometry optimization using first-principles calculations (2023)
62 Sorption and mobility of radioactive Ni in Wolsong waste repository site, South Korea (2023)
61 Microstructure and texture analysis of 304 austenitic stainless steel using Bragg edge transmission imaging (2023)
first prv 1 2 3 4 5 next end