Publications
HOME > Achievement > Publications
Á¦¸ñ Recent advances in Fenton-like treatment of radioactive ion exchange resins (2023)

Recent advances in Fenton-like treatment of radioactive ion exchange resins (2023)

 

Muhammad Aamir Hafeez, Bhupendra Kumar Singh, Seok Hoon Yang, Jueun Kim, Byoungkwan Kim, Younglim Shin, Wooyong Um

 

Chemical Engineering Journal Advances Volume 14, 15 May 2023, 100461

 

DOI : https://doi.org/10.1016/j.ceja.2023.100461

 

 

ABSTRACT

 

Ion exchange resins (IERs) are widely used to remove radioactive contaminants from various commercial nuclear power plant systems. After the completion of their useful life cycle, IERs are removed from the nuclear facility and are known as spent resins. In the past few decades, the development of Fenton/Fenton-like treatments for the management of spent resins has received considerable attention because of their potential to completely break down the IER structure into harmless compounds (e.g., carbon dioxide, water, and inorganic salts). In addition, after Fenton-like treatments, the resulting solutions containing radionuclides can be easily immobilized to stable waste. In this review, we critically discuss the key developments in Fenton/Fenton-like dissolution, degradation, and mineralization of spent resins. We describe the important reaction parameters (initial pH, resin dosage, catalyst type and dosage, hydrogen peroxide dosage, flow rates of the catalyst and oxidant, reaction temperature, treatment time, and other specific parameters) for various Fenton/Fenton-like treatments of spent resins. Moreover, this review focuses heavily on the major reaction intermediates generated in Fenton-like treatments. In the final section of this review (conclusions and perspectives), we discuss the major challenges and suggest future research directions need to be addressed to improve the efficiency of Fenton-like treatments of spent resins.


¹øÈ£ Á¦¸ñ
75 Mechanistic insights into radium adsorption on montmorillonite: DFT and experimental studies (2025)
74 Cesium removal from contaminated montmorillonite using ethylene glycol monoethyl ether and Freezing-Thawing process (2025)
73 Development of a sulfidized zerovalent iron-geopolymer composite for the reductive immobilization of ReO4− (2025)
72 Risks of Nanoscale Byproducts Generated during the Interzeolite Transformation for Cesium Sequestration (2025)
71 Assessment of structural stability and leaching characteristics of phosphate-based geopolymer waste form containing radioactive spent ion exchange resins (2025)
70 Functionalization of layered double hydroxides on bentonite for cesium and iodine retention in high-level radioactive waste disposal (2025)
69 Synthesized Ettringite for Sequestration of Inorganic 14C from the Waste Solution (2025)
68 Key Progress on Chemistry and Analysis of 238 U, 99 Tc, and 137 Cs Radionuclides (2024)
67 Solubility, complexation and thermodynamics of the Tc(IV)–isosaccharinic acid system: Trends in the M(IV) series (2024)
66 Engineered Sorbents for Selective Uranium Sequestration from Seawater (2024)
65 Assessment of Uranium and Thorium Co-contaminant Exposure from Incidental Concrete Dust Ingestion (2023)
64 Application of Clay Materials for Sorption of Radionuclides from Waste Solutions (2023)
63 Prediction of stable radon fluoride molecules and geometry optimization using first-principles calculations (2023)
62 Sorption and mobility of radioactive Ni in Wolsong waste repository site, South Korea (2023)
61 Microstructure and texture analysis of 304 austenitic stainless steel using Bragg edge transmission imaging (2023)
first prv 1 2 3 4 5 next end