Publications
HOME > Achievement > Publications
Á¦¸ñ Comparative study of PMS oxidation with Fenton oxidation as an advanced oxidation process for Co-EDTA decomplexation (2022)

Comparative study of PMS oxidation with Fenton oxidation as an advanced oxidation process for Co-EDTA decomplexation (2022)

 

Juhyeok Lee, Bhupendra Kumar Singh, Muhammad Aamir Hafeez, Kyeongseok Oh, Wooyong Um

 

Chemosphere, Volume 300, August 2022, 134494

 

DOI : https://doi.org/10.1016/j.chemosphere.2022.134494

 

 

ABSTRACT

 

In nuclear industry, Co-EDTA complex is generated due to the decontamination activities of nuclear power plants (NPPs). This complex is extremely refractory to the convention methods and can escalate the mobility of Co radionuclide in the environment. Due to its hazardous impact on human and environment, the effective treatments of Co-EDTA complexes are highly recommended. In this study, for the first time, we applied both hydroxyl (OHradical dot) and sulfate radical (SO4radical dot-) based advanced oxidation processes (AOPs) namely Fenton and peroxymonosulfate (PMS) reactions for the Co-EDTA decomplexation. Both reactions exhibited higher Co-EDTA decomplexation at pH = 3, however, the PMS based reaction was found to be superior, which showed highest decomplexation efficiency (without pH adjustment) over Fenton reaction (pH = 113). Moreover, PMS based system was found to be more suitable than Fenton reaction, because PMS showed best Co-EDTA decomplexation efficiency without any additional catalyst dosages at the shorter reaction time. XRD data confirmed the presence of both CoO and Co(OH)2 in the precipitates after treatment. The electron spin resonance spectroscopy (ESR) analysis identified OHradical dot and SO4radical dot- in Fenton and PMS system, respectively. From this study, we believe that PMS based reaction is a superior alternative of Fenton reaction for the Co-EDTA decomplexation. 


¹øÈ£ Á¦¸ñ
62 Sorption and mobility of radioactive Ni in Wolsong waste repository site, South Korea (2023)
61 Microstructure and texture analysis of 304 austenitic stainless steel using Bragg edge transmission imaging (2023)
60 Waste acceptance criteria testings of a phosphate-based geopolymer waste form to immobilize radioactive borate waste (2023)
59 Effect of Si/Al molar ratio and curing temperatures on the immobilization of radioactive borate waste in metakaolin-based geopolymer waste form (2023)
58 Estimation of radionuclides leaching characteristics in different sized geopolymer waste forms with simulated spent ion-exchange resin (2023)
57 Potential of indigenous bacteria driven U(VI) reduction under relevant deep geological repository (DGR) conditions (2023)
56 Dissolution Behaviors of PuO2(cr) in Natural Waters (2023)
55 Design and Application of Materials for Sequestration and Immobilization of 99Tc (2023)
54 Evaluating the impact of drying on leaching from a solidified/stabilized waste using a monolithic diffusion model (2023)
53 Acute oral toxicity and bioavailability of uranium and thorium in contaminated soil (2023)
52 Monte Carlo study of an electron-based neutron source for Bragg edge imaging (2023)
51 Tritium separation from radioactive wastewater by hydrogen isotope‒selective exchange of hydrogen‒bonded fluorine (2023)
50 Influence of MnO and ZnO on molybdate crystallization in borosilicate glass (2023)
49 Technetium (Tc)/Rhenium (Re) Solubility and Leaching Behavior from Waste Forms: An Overview (2023)
48 Stability of SrCO3 within composite Portland-slag cement blends (2023)
first prv 1 2 3 4 5 next end